DEEP LEARNING FRAMEWORK FOR "RUN 3"

Malcolm Grant, Kai Burgermeister, Ely Brayboy, Kaspar Pitblado

Department of Computer Science, Brown University

= 1. Introduction

We wanted to train a model to learn how to play Run3 on Coolmath Games.
The goal of the game is to maneuver the “citizen” through the various 3D
environments using the arrows on the keyboard. Unlike conventional RL
benchmarks that expose structured game state information, a browser
based setting offers no direct access to internal variables, requiring the
agent to operate solely on the visual stream presented to the player. To
address this, we developed a fully vision-based learning system that
captures real time screen observations and processes them through a
convolutional neural network. The system then selects keyboard actions

using a Proximal Policy Optimization (PPO) framework.

Although this game may be simple for a human, we faced many challenges:

. Difficult environment
o The environment is 3D with hard-to see holes
o Requires some looking ahead
o Running on walls rotates the entire environment
o Diverse obstacles like falling panels, speed boosts,
ramps, boxes
Slow data collection
o Cannot simulate the environment, need to collect real
time
o Only about 3 pieces of data per second
o Limited by actions and screenshot overhead
Action representation
Reward shaping

= 4. Results

After a few dozen hours of testing and training, we were able to achieve an
algorithm which could play the game somewhat well and survive many
obstacles. However it was very inconsistent, and still often jumps into the
void for no reason. If you watch for minute or so, you will almost definitely

see a few moments of brilliance from our little parkour alien.

\
H
\
M M‘u“m"\\ \A‘*;\Q‘A |
TR PN

wl i |
ik A M\H\M N
TRINN I ‘u\ | M M

~¥‘Vm “'vw" ‘\‘m»\v”) \
Y mw's'

%: 2. Dataset and Preprocessing

Our system employs a complete end-to-end pipeline that begins
with real-time screen capture of the Run 3 browser game at 3-4

frames per second using the high-performance mss library.
Fulfame with RO (unway=rsen, e, iht-red

Each captured frame (725x545 pixels)
undergoes preprocessing: conversion
to grayscale to reduce dimensionality,
resizing to 128x128 pixels for

computational efficiency, and stacking

Additionally, we define three

with the three most recent frames to regions of interest (ROIs)

create a 128x128x4 tensor that within each frame:

encodes temporal motion information ’
P a central runway region for

(as illustrated in the accompanying calculating platform
figure). alignment rewards (0.0-0.25

bonus based on pixel

3 . P
oo Wall strips for penalizing not

occupancy), and left/right

Runway ROl preprocessed) Lefesiip RO (preprocessed)

being in the correct

orientation.

Reward Exploitation (The “Box Strat”)

After about 6 hours of training, our
agent learned to exploit our reward
function by sitting behind these
boxes and infinitely accumulating
survival points while never dying.
This was extremely frustrating and
warped many good trains and policy
networks. To work around this we
hard coded a solution to move the

agent manually when it did this.

¥ 3. Methodology

Following data preprocessing, the observation feeds into a
PPO-based Actor-Critic architecture featuring a CNN backbone with
three convolutional layers (32, 64, and 64 filters with progressively
smaller kernels and strides) that extract
hierarchical visual features,

followed by a shared fully connected
layer (512 units) that branches into End-to-End RL System Pipeline
two heads: an actor network that

outputs action probabilities over 11

discrete actions (no-op, directional

movements at varying durations

of 50ms, 100ms, and 250ms, plus

diagonal combinations), and a critic

network that estimates state values

for advantage computation.

Have a look at our System Pipeline Diagram to understand how all

the pieces fit together!

5. Discussion

There are several straightforward ways this project could be improved if we
had more time. The most obvious is simply training the agent for much
longer; running 200+ epochs instead of ~100 would almost certainly help
smooth out the high-variance behavior we see now. We could also test
different action spaces, to see what the best balance is between control and
simplicity. Adjusting hyperparameters more systematically would probably
make training more stable as well. And in the long run, we would love to be
able to do parallel training with multiple computers, sa the training process
is very inefficient. We might want to rethink the way we preprocess the
images as well, as the breakable gray tiles are almost indistinguishable in

grayscale from some other colors.

