
Poster ID: #12345 | Presented at the International Conference on Deep Learning | Contact: email@university.edu

DEEP LEARNING FRAMEWORK FOR "RUN 3"
Malcolm Grant, Kai Burgermeister, Ely Brayboy, Kaspar Pitblado
 Department of Computer Science, Brown University

1. Introduction 2. Dataset and Preprocessing 3. Methodology

4. Results 5. Discussion

References: [1] Author et al. (2023). Title of Paper. [2] Author et al. (2024). Title of Book.

We wanted to train a model to learn how to play Run3 on Coolmath Games.

The goal of the game is to maneuver the “citizen” through the various 3D

environments using the arrows on the keyboard. Unlike conventional RL

benchmarks that expose structured game state information, a browser

based setting offers no direct access to internal variables, requiring the

agent to operate solely on the visual stream presented to the player. To

address this, we developed a fully vision-based learning system that

captures real time screen observations and processes them through a

convolutional neural network. The system then selects keyboard actions

using a Proximal Policy Optimization (PPO) framework.

Although this game may be simple for a human, we faced many challenges:

● Difficult environment
○ The environment is 3D with hard-to see holes
○ Requires some looking ahead
○ Running on walls rotates the entire environment
○ Diverse obstacles like falling panels, speed boosts,

ramps, boxes
● Slow data collection

○ Cannot simulate the environment, need to collect real
time

○ Only about 3 pieces of data per second
○ Limited by actions and screenshot overhead

● Action representation
● Reward shaping

Our system employs a complete end-to-end pipeline that begins

with real-time screen capture of the Run 3 browser game at 3-4

frames per second using the high-performance mss library.

Following data preprocessing, the observation feeds into a

PPO-based Actor-Critic architecture featuring a CNN backbone with

three convolutional layers (32, 64, and 64 filters with progressively

smaller kernels and strides) that extract

hierarchical visual features,

followed by a shared fully connected

layer (512 units) that branches into

two heads: an actor network that

outputs action probabilities over 11

 discrete actions (no-op, directional

movements at varying durations

of 50ms, 100ms, and 250ms, plus

diagonal combinations), and a critic

network that estimates state values

for advantage computation.

Have a look at our System Pipeline Diagram to understand how all

the pieces fit together!

After a few dozen hours of testing and training, we were able to achieve an

algorithm which could play the game somewhat well and survive many

obstacles. However it was very inconsistent, and still often jumps into the

void for no reason. If you watch for minute or so, you will almost definitely

see a few moments of brilliance from our little parkour alien.

There are several straightforward ways this project could be improved if we

had more time. The most obvious is simply training the agent for much

longer; running 200+ epochs instead of ~100 would almost certainly help

smooth out the high-variance behavior we see now. We could also test

different action spaces, to see what the best balance is between control and

simplicity. Adjusting hyperparameters more systematically would probably

make training more stable as well. And in the long run, we would love to be

able to do parallel training with multiple computers, sa the training process

is very inefficient. We might want to rethink the way we preprocess the

images as well, as the breakable gray tiles are almost indistinguishable in

grayscale from some other colors.

After about 6 hours of training, our

agent learned to exploit our reward

function by sitting behind these

boxes and infinitely accumulating

survival points while never dying.

This was extremely frustrating and

warped many good trains and policy

networks. To work around this we

hard coded a solution to move the

agent manually when it did this.

Each captured frame (725×545 pixels)

undergoes preprocessing: conversion

to grayscale to reduce dimensionality,

resizing to 128×128 pixels for

computational efficiency, and stacking

with the three most recent frames to

create a 128×128×4 tensor that

encodes temporal motion information

(as illustrated in the accompanying

figure).

Reward Exploitation (The “Box Strat”)

Additionally, we define three

regions of interest (ROIs)

within each frame:

a central runway region for

calculating platform

alignment rewards (0.0-0.25

bonus based on pixel

occupancy), and left/right

 wall strips for penalizing not

being in the correct

orientation.

