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We wanted to train a model to learn how to play Run3 on Coolmath Games. 

The goal of the game is to maneuver the “citizen” through the various 3D 

environments using the arrows on the keyboard. Unlike conventional RL 

benchmarks that expose structured game state information, a browser 

based setting offers no direct access to internal variables, requiring the 

agent to operate solely on the visual stream presented to the player. To 

address this, we developed a fully vision-based learning system that 

captures real time screen observations and processes them through a 

convolutional neural network. The system then selects keyboard actions 

using a Proximal Policy Optimization (PPO) framework.

Although this game may be simple for a human, we faced many challenges:

● Difficult environment 
○ The environment is 3D with hard-to see holes
○ Requires some looking ahead
○ Running on walls rotates the entire environment
○ Diverse obstacles like falling panels, speed boosts, 

ramps, boxes
● Slow data collection

○ Cannot simulate the environment, need to collect real 
time 

○ Only about 3 pieces of data per second
○ Limited by actions and screenshot overhead

● Action representation
● Reward shaping

Our system employs a complete end-to-end pipeline that begins 

with real-time screen capture of the Run 3 browser game at 3-4 

frames per second using the high-performance mss library.

Following data preprocessing, the observation feeds into a 

PPO-based Actor-Critic architecture featuring a CNN backbone with 

three convolutional layers (32, 64, and 64 filters with progressively 

smaller kernels and strides) that extract 

hierarchical visual features, 

followed by a shared fully connected

layer (512 units) that branches into 

two heads: an actor network that 

outputs action probabilities over 11

 discrete actions (no-op, directional

movements at varying durations 

of 50ms, 100ms, and 250ms, plus 

diagonal combinations), and a critic

network that estimates state values

for advantage computation.

Have a look at our System Pipeline Diagram to understand how all 

the pieces fit together!

After a few dozen hours of testing and training, we were able to achieve an 

algorithm which could play the game somewhat well and survive many 

obstacles. However it was very inconsistent, and still often jumps into the 

void for no reason. If you watch for minute or so, you will almost definitely 

see a few moments of brilliance from our little parkour alien.

There are several straightforward ways this project could be improved if we 

had more time. The most obvious is simply training the agent for much 

longer; running 200+ epochs instead of ~100 would almost certainly help 

smooth out the high-variance behavior we see now. We could also test 

different action spaces, to see what the best balance is between control and 

simplicity. Adjusting hyperparameters more systematically would probably 

make training more stable as well. And in the long run, we would love to be 

able to do parallel training with multiple computers, sa the training process 

is very inefficient. We might want to rethink the way we preprocess the 

images as well, as the breakable gray tiles are almost indistinguishable in 

grayscale from some other colors.

After about 6 hours of training, our 

agent learned to exploit our reward 

function by sitting behind these 

boxes and infinitely accumulating 

survival points while never dying. 

This was extremely frustrating and 

warped many good trains and policy 

networks. To work around this we 

hard coded a solution to move the 

agent manually when it did this.

Each captured frame (725×545 pixels) 

undergoes preprocessing: conversion 

to grayscale to reduce dimensionality, 

resizing to 128×128 pixels for 

computational efficiency, and stacking 

with the three most recent frames to 

create a 128×128×4 tensor that 

encodes temporal motion information 

(as illustrated in the accompanying 

figure). 

Reward Exploitation (The “Box Strat”)

Additionally, we define three 

regions of interest (ROIs) 

within each frame: 

a central runway region for 

calculating platform 

alignment rewards (0.0-0.25 

bonus based on pixel 

occupancy), and left/right

 wall strips for penalizing not 

being in the correct 

orientation.


